Exercise 93

A soccer stadium holds 62,000 spectators. With a ticket price of $\$ 11$, the average attendance has been 26,000 . When the price dropped to $\$ 9$, the average attendance rose to 31,000 . Assuming that attendance is linearly related to ticket price, what ticket price would maximize revenue?

Solution

Start by writing a formula for the average attendance. Two points on the line are $(11,26000)$ and (9,31000). The slope of the line is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{31000-26000}{9-11}=\frac{5000}{-2}=-2500
$$

Use the point-slope formula with either of the two points to get the equation of the line.

$$
\begin{gathered}
y-26000=-2500(x-11) \\
y-26000=-2500 x+27500 \\
y=-2500 x+53500
\end{gathered}
$$

The revenue generated is the ticket price x times the number of people that attend y.

$$
\begin{aligned}
R & =x y \\
& =x(-2500 x+53500) \\
& =-2500 x^{2}+53500 x
\end{aligned}
$$

Complete the square to write the quadratic function in vertex form.

$$
\begin{aligned}
R & =-2500\left(x^{2}-\frac{107}{5} x\right) \\
& =-2500\left[\left(x^{2}-\frac{107}{5} x+\frac{107^{2}}{10^{2}}\right)-\frac{107^{2}}{10^{2}}\right] \\
& =-2500\left[\left(x-\frac{107}{10}\right)^{2}-\frac{107^{2}}{10^{2}}\right] \\
& =-2500\left(x-\frac{107}{10}\right)^{2}+286225
\end{aligned}
$$

Therefore, the maximum revenue is $R=\$ 286,225$, which occurs when $x=\frac{107}{10}=\$ 10.70$.

